

DP485M(Modbus Type) Display Panel

1.개요

DP485M 은 DP485D 의 Modbus RTU 방식 통신 모델로 RS485시리얼 통신을 통해 4자리 FND모듈에 숫자 및 문자를 표시할수있도록 개발된 제품입니다. DP485M 은 Blink, 도토 표기, Hex표기등의 다양한 기능을 내장하고 있으며, 각 자리에 Ascii코드를 전송함으로서 해당문자를 쉽게 표시할 수 있는 장점도 지니고 있습니다. DP485M 은 디스플레이 기능뿐만 아니라 스위치입력 5점(접점입력 2점포함)을 호스트로 전송할수 있어서 로컬에서 값을 설정하거나 변경하는 기능을 수행할수 있는 특징이 있으며, 더불어 릴레이 출력이 2점(NO접점)이 내장되어 간단한 리모트 I/O 기능을 수행할수 있습니다. 통신 프로토콜은 Modbus RTU 방식으로 DP485D 보다 편리하게 사용할수 있습니다.

(통신버전에 따라 DP485D, 쉬운통신 DP485E 모델 별도 판매)

2.일반사항

- 시리얼 입력만으로 4자리의 7세그먼트에 영, 숫자 표시 가능
- 통신방식 RS485 반이중 (8, N, 1)
- 통신 보레이트 변경 가능(9600/19200/38400/57600 bps)
- 16개의 ID 부여 가능(어드레스 설정페이지 참조)
- HEX 숫자, 영문자, 특수기호, DOT 표시 가능 (아래의 테이블 참조)
- 특정 위치의 FND FLASHING 가능
- 특정 위치의 DOT, DOT FLASHING 표시가능
- 입력 5점 (판넬버튼 3점, 접점입력 2점)
- 릴레이(NO) 출력 2점
- Modbus RTU 통신 프로토콜
- 호스트의 쓰기명령 응답(ACK) 은 선택가능 (불필요한 통신부하를 줄이는 목적, ACK 활성시 스위치입력 및 릴레이 출력값 반송)
- 동작전원 AC220V, DC12V~DC24V 모델구분

DP485M-AC, DP485M-DC

3. 적용분야

- PLC 및 PC 데이터 표시용
- 워격 디스플레이
- 간이 리모트 I/O

4. 국번 ID 보레이트 및 ACK 설정방법

- 전원 OFF 후 SET 버튼 누른 상태로 전원 ON
- n-AX 표시됨 (국번 ID 설정모드 A0~AF)
- UP, DN 버튼으로 국번 ID 설정
- SET 버튼누름 br0X 표시됨 (보레이트 설정모드)
- UP, DN 버튼으로 보레이트 설정

(br01: 9600, br02: 19200, br03: 38400, br04: 57600 bps)

- SET 버튼 누름
- ac-X 표시됨(쓰기 ACK 여부)
- UP, DN 버튼으로 쓰기 ACK 활성여부 결정 (ac-o: ACK 활성:스위치입력값 반송, ac-F: ACK 비활성)
- SET 버튼 누름
- bL-X 표시됨(Blank 공란처리 여부)
- UP, DN 버튼으로 공란(앞자리 0일 경우 공란)결정 (bL-o: 앞에 빈자리 공란, bL-F: 앞에 빈자리 0표시)
- SET 버튼눌러 SET 모드 빠져나옴

5. DP485 기본 문자코드테이블(ASCII 코드호환)

상위 니블

) II I =	=		
	Hex	2	3	4	5	6	7
	0	Blank	0		Р		Р
	1]	1	Α	q	Α	q
	2	_	2	b	r	b	r
	3	II	3	O	S	C	S
	4		4	d	Т	d	t
	5		5	Е	U	е	u
하	6	Γ	6	F		F	
위 니	7	L	7	g		g	
블	8	٦	8	Н		h	
_	9	Т	9	_	у	_	у
	Α	U		J		j	
	В	n	_		[
	С	7		L	L	_	
	D	_		n]	n	
	Е	3		n		n	
	F			0		0	

1)회색 칸의 문자는 ASCII코드와 차이가 있는 부분입니다. 2)FND 표현 가능여부에 따라 대소문자가 혼용되었습니다. 3)특정 기호들은 해당기호 문자가 표시 불가능하기 때문에 최대한 비슷한 기호로 대치하였습니다.

6. 쓰기명령 : Function Code 06(국번A1번으로 가정)

ID	Function Code	ADDRESS		DATA		CRC	
0xA1	0x06	ADD High	ADD Low	Data High	Data Low	CRC Low	CRC High

	ON 설정일 경우	ID	Function Code	BYTE	DA	ATA	CF	RC	ì
	DP 485> PLC (PC) 로	041	004	002	LED VALUE	KEN MALLIE	CDC Law	CDC Himb	
스위치	디입력값 + 릴레이 상태 전송	0xA1	0x04	0x02	LED VALUE	KEY_VALUE	CRC LOW	CRC High	

명령 형식	ID	Function Code	ADD	RESS	DA	NTA	CF	RC
릴레이 출력	0xA1	0x06	0x00	0xC1	0x00	RELAY	CRC Low	CRC High
디스플레이 형식	0xA1	0x06	0x00	0xC2	FORMAT	FUNCTION	CRC Low	CRC High
데이터1 HEX,DEC,ASCII-1	0xA1	0x06	0x00	0xC3	DATA H	DATA L	CRC Low	CRC High
데이타2 ASCII-2	0xA1	0x06	0x00	0xC4	0x00	DATA	CRC Low	CRC High
데이타3 ASCII-3	0xA1	0x06	0x00	0xC5	0x00	DATA	CRC Low	CRC High
데이타4 ASCII-4	0xA1	0x06	0x00	0xC6	0x00	DATA	CRC Low	CRC High
읽기명령(READ)	0xA1	0x04	0x00	0xCA	0x00	0x01	CRC Low	CRC High

통신개요 : Modbus Function Code 06, 04 only Function Code 06 : Write Single Registor Function Code 04 : Read Input Registor

국번은 0xA0 ~ 0xAF 까지 16개

쓰기 명령은 0xC1 ~ 0xC6, 읽기명령 0xCA

아래 예제는 단말기ID: 0xA1 가정

1) 릴레이 출력 명령 (ADDRESS LOW : 0xC1)

ADD Low	DATA High	DATA Low	설명
0xC1	0x00	0x01	릴레이1, 비트0 (2진 000 <mark>1</mark>)
0xC1	0x00	0x02	릴레이2, 비트1 (2진 00 <mark>1</mark> 0)

/ 릴레이1 ON, 릴레이2 OFF : 2진데이터 ->0000 0000 0000 0001

ID	F. Code	ADDRESS		DATA		CRC	
0xA1	0x06	0x00	0xC1	0x00	0x01	0x01	0x56
		립레이축력		Relay 1 ON			

/ 릴레이1 OFF, 릴레이2 ON : 2진데이터 ->0000 0000 0000 0010

ID	F. Code	ADDRESS		DA	TA	CRC	
0xA1	0x06	0x00	0xC1	0x00	0x02	0x41	0x57
		릴레이출력		Relay 2 ON			

/ 릴레이1 ON, 릴레이2 ON : 2진데이터 ->0000 0000 0000 0011

ID	F. Code	ADDRESS		DA	TA	CRC	
0xA1	0x06	0x00	0xC1	0x00	0x03	0x80	0x97
		릴레이출력		Relay 1	, 2 ON		

/ 릴레이1 OFF, 릴레이2 OFF : 2진데이터 ->0000 0000 0000 0000

ID	F. Code	ADDRESS		DATA		CRC	
0xA1	0x06	0x00	0xC1	0x00	0x03	0xC0	0x96
		릭레이출력		Relay 1 2 OFF			

2) 디스플레이 형식명령 (ADDRESS LOW: 0xC2) / DATA High

/ 형식명령 0xC2 의 상위값 DATA1 이 형식을 결정한다

ADD Low	DATA High	DATA Low	설명
0xC2	0xBA	FUNCTION	십육진수 표기 (0~FFFF)
0xC2	0xBB	FUNCTION	십진수 표기 (0~9999)
0xC2	0xBC	FUNCTION	문자 표기 (ASCII 코드)
0xC2	0xBD	FUNCTION	음수 십진수 표기 (0~-999)

/ 디스플레이 형식 십진수로 설정 (전원ON시 디폴트값)

ID	F. Code	ADDRESS		DA	λTA	CRC	
0xA1	0x06	0x00	0xC2	0xBB	FUNCTION	CRC L	CRC H
		형식명령		십진수	Dot, Flash		

3) 디스플레이 데이터 1 (ADDRESS LOW: 0xC3)

/ 데이터 1 에는 형식명령에 따라 그 값이 의미하는 것이 달라진다

형식명령에 따라	데이터값
십육진 형식	0 ~ FFFF
십진수 형식	0 ~ 9999
음수 십진형식	0 ~ -999
문자 표기	위치1 아스키 문자

/ 디스플레이 형식 십진수 일 경우 숫자 100 표시 디스플레이 형식 십육진수 일 경우 숫자 64 표시

l	ID	F. Code	ADDRESS		DATA		CRC	
I	0xA1	0x06	0x00	0xC3	0x00	0x64	0x60	0xBD
			데이터1명령		100			

/ 디스플레이 형식 십진수 일 경우 숫자 291 표시 디스플레이 형식 십육진수 일 경우 숫자 123 표시

ID)	F. Code	ADDRESS		DA	λTA	CRC	
0xA	۱1	0x06	0x00	0xC3	0x01	0x23	0x21	0x1F
			데이터1명령		291			

4) 아스키 데이터값 표시방법 (Err1 표시방법)

/ 우선 디스플레이 형식 문자 표기 (ASCII 코드) 로 설정 DATA High 에 데이터 0xBC 전송

ID	F. Code	ADDRESS		DA	·ΤΑ	CRC	
0xA1	0x06	0x00	0xC2	0xBC	FUNCTION	CRC L	CRC H
		형식명령		ASCII	Dot, Flash		

/ 위치 1 에 문자 'E' 표시

데이터1 명령 0x00 0xC3 에 데이터 0x00 0x45 전송 (문자 'E' 의 아스키코드 0x45)

ID	F. Code	ADDRESS		DATA		CRC	
0xA1	0x06	0x00	0xC3	0x00	0x45	0xA0	0xA5
		데이터1 주소		아스키 'E'			

/ 위치 2 에 문자 'r' 표시

데이터2 명령 0x00 0xC4 에 데이터 0x00 0x52 전송 (문자 'r' 의 아스키코드 0x52) DP485 에서는 대문자 'R' 도 소문자 'r' 로 표시됨

ID	F. Code	ADDRESS		DA	TA	CRC	
0xA1	0x06	0x00	0xC4	0x00	0x52	0x51	0x6A
		데이터2 주소		아스키 'r'			

/ 위치 3 에 문자 'r' 표시

데이터3 명령 0x00 0xC5 에 데이터 0x00 0x52 전송 (문자 'r' 의 아스키코드 0x52)

ID	F. Code	ADDRESS		DA	TA	CRC	
0xA1	0x06	0x00	0xC5	0x00	0x52	0x00	0xAA
		데이터3 주소		아스키 'r'			

/ 위치 4 에 문자 '1' 표시

데이터4 명령 0x00 0xC6 에 데이터 0x00 0x31 전송 (문자 '1' 의 아스키코드 0x31)

ID	F. Code	ADDRESS		DATA		CRC	
0xA1	0x06	0x00	0xC6	0x00	0x31	0xB0	0x83
		데이터4 주소		아스키 '1'			

■ Dot 제어 명령

특정 위치의 Dot를 On하거나 전체 OFF, 특정 도트를 Flashing 시 키거나 전체 Flashing을 OFF하는 명령입니다 Dot가 Flashing하기 위해서는 해당 Dot가 우선 On이 되어있어야 합니다.

디스플레이 형식명령 (ADDRESS LOW: 0xC2) / DATA Low

/ 형식명령 0x00 0xC2 의 DATA Low 의 값이 도트 표시를 결정한다

ADD Low	DATA High	DATA Low	설명
0xC2	FORMAT	0xD0	모든위치에 도트 표시
0xC2	FORMAT	0xD1	위치 1 에 도트 표시
0xC2	FORMAT	0xD2	위치 2 에 도트 표시
0xC2	FORMAT	0xD3	위치 3 에 도트 표시
0xC2	FORMAT	0xD4	위치 4 에 도트 표시
0xC2	FORMAT	0xDF	모든위치 도트 OFF

/ 위치 3 에 도트 표시 (현재 Err1 표시중 이라면 --> Err.1 으로) DATA High 아스키모드 유지 (0xBC) + DATA Low 도트3위치 (0xD3)

ID	F. Code	ADD	ADDRESS		DATA		CRC	
0xA1	0x06	0x00	0xC2	0xBC	0xD3	0x01	0xCB	
		혀시며려		ASCII	의치3 Dot			

/ 도트 점멸 표시

/ 형식명령 0x00 0xC2 의 DATA Low 의 값이 도트 점멸표시를 결정한다

ADD Low	DATA High	DATA Low	설명
0xC2	FORMAT	0xE0	모든위치에 도트 점멸표시
0xC2	FORMAT	0xE1	위치 1 에 도트 점멸표시
0xC2	FORMAT	0xE2	위치 2 에 도트 점멸표시
0xC2	FORMAT	0xE3	위치 3 에 도트 점멸표시
0xC2	FORMAT	0xE4	위치 4 에 도트 점멸표시
0xC2	FORMAT	0xEF	모든위치 도트 점멸OFF

/ 위치 3 에 도트 점멸 표시 (현재 Err.1 표시중 이라가정 하고 도트점멸) DATA High 아스키모드 유지 (0xBC) + DATA Low 도트점멸3위치 (0xE3)

ID	F. Code	ADDRESS		DATA		CRC	
0xA1	0x06	0x00	0xC2	0xBC	0xE3	0x01	0xDF
		형식명령		ASCII	위치3 Dot저면		

■ Flash 명령

특정 위치를 Flash(깜박임) 표시하는 명령입니다. 위치와 명령어가 혼합된 형태입니다.

도트는 특정위치 점멸과 별도로 작동합니다.

도트까지 점멸할려면 위에 도트점멸 명령을 추가해야 합니다.

/ 형식명령 0x00 0xC2 의 DATA Low 의 값이 점멸 표시를 결정한다

ADD Low	DATA High	DATA Low	설명
0xC2	FORMAT	0xF0	모든위치에 점멸 표시
0xC2	FORMAT	0xF1	위치 1 에 점멸 표시
0xC2	FORMAT	0xF2	위치 2 에 점멸 표시
0xC2	FORMAT	0xF3	위치 3 에 점멸 표시
0xC2	FORMAT	0xF4	위치 4 에 점멸 표시
0xC2	FORMAT	0xF7	위치 1,2 에 점멸 표시
0xC2	FORMAT	0xF8	위치 2,3 에 점멸 표시
0xC2	FORMAT	0xF9	위치 3,4 에 점멸 표시
0xC2	FORMAT	0xFF	모든위치 점멸 OFF

/ 위치 3 점멸 표시 (현재 Err.1 표시중 이라가정 하고 'r' 점멸) DATA High 아스키모드 유지 (0xBC) + DATA Low 점멸3위치 (0xF3)

ID	F. Code	ADDRESS		DA	TA	CRC	
0xA1	0x06	0x00	0xC2	0xBC	0xF3	0x00	0x13
		형식명령		ASCII	위치3 점멸		

※ 팁:

일반 숫자값 만을 표시하기 : 데이터1(ADDRESS : 0x00 0xC3) 만 사용

/ 1. 디스플레이 형식 (ADDRESS: 0x00 0xC2) 결정

ID	F. Code	ADDRESS		DATA		CRC		형식
0xA1	0x06	0x00	0xC2	0xBA	FUNCTION	CRCH	CRCL	십육진
0xA1	0x06	0x00	0xC2	0xBB	FUNCTION	CRCH	CRCL	십진
0xA1	0x06	0x00	0xC2	0xBD	FUNCTION	CRCH	CRCL	음수

/ 2. 데이터1 명령 (ADDRESS: 0x00 0xC3) 에만 값을 써주면 됩니다.

ID	F. Code	ADDRESS		DA	TA	CRC	
0xA1	0x06	0x00	0xC3	0x00	0x64	0x60	0xBD
		데이터1명령		10	00		

문자나 특수기호 등을 표기하기: 데이터1, 2, 3, 4 명령사용

/ 1. 디스플레이 형식 (ADDRESS: 0x00 0xC2) 결정

ID	F. Code	ADDRESS		D/	ATA	CRC	
0xA1	0x06	0x00	0xC2	0xBC	FUNCTION	CRC L	CRC H
		형식명령		ASCII	Dot. Flash		

/ 2. 각각의 위치에 해당하는 데이터를 써준다(예: Err1)

데이터1(위치1: ADDRESS : 0x00 0xC3), 데이터2(위치2: ADDRESS : 0x00 0xC4), 데이터3(위치3: ADDRESS : 0x00 0xC5), 데이터4(위치4: ADDRESS : 0x00 0xC5)

ID	F. Code	ADDRESS		DA	TA	CRC	
0xA1	0x06	0x00	0xC3	0x00	0x45	0xA0	0xA5
0xA1	0x06	0x00	0xC4	0x00	0x52	0x51	0x6A
0xA1	0x06	0x00	0xC5	0x00	0x52	0x00	0xAA
0xA1	0x06	0x00	0xC6	0x00	0x31	0xB0	0x83
		데이터1,2,3,4		아스키	'Err1'		

7. 읽기명령: Function Code 04(국번A1번으로 가정) / 입력 명령 (ADDRESS: 0x00 0xCA)

ID	F. Code	ADDRESS		DA	TA	CRC	
0xA1	0x04	0x00	0xCA	0x00	0x01	CRC L	CRC H
		형식명령		ASCII	Dot. Flash	0x09	0x54

/ 리턴값

ID	F. Code	BYTE	DATA		CRC	
0xA1	0x04	0x02	LED	KEY	CRC L	CRC H
	응답		KEY,INPUT			

/ LED 응답값 DATA High - DP485E 에서는 의미없음

/ KEY 응답값 DATA Low

 / 비트 7
 : IN2
 (1:ON, 0: OFF)

 / 비트 6
 : IN1
 (1:ON, 0: OFF)

 / 비트 5
 : 릴레이2 출력상태
 (1:ON, 0: OFF)

 / 비트 4
 : 릴레이1 출력상태
 (1:ON, 0: OFF)

 / 비트 3
 : NOT USE

 / 비트 2
 : SET 버튼 입력
 (1:ON, 0: OFF)

 / 비트 1
 : UP 버튼 입력
 (1:ON, 0: OFF)

 / 비트 0
 : DOWN 버튼 입력
 (1:ON, 0: OFF)

 ※ ACK 활성
 으로 설정하면 쓰기명령에도 응답함

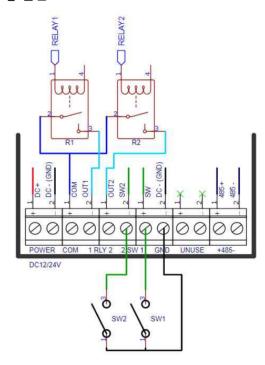
/ 응답값 예시(DP485 --> PC, PLC)

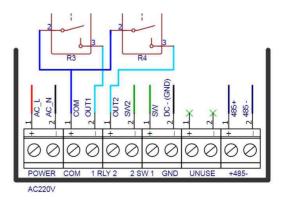
ID	F. Code	BYTE	DATA H		CRC L	CRC H	설명
0xA1	0x04	0x02	0x00	0x00	0x04	CIC II	스위치X, 릴레이X
0xA1	0x04	0x02	0x00	0x01	0x04		DOWN
0xA1	0x04	0x02	0x00	0x02	0x04		UP
0xA1	0x04	0x02	0x00	0x04	0x04		SET
0xA1	0x04	0x02	0x00	0x08	0x04		NOT USE
0xA1	0x04	0x02	0x00	0x10	0x04		릴레이1
0xA1	0x04	0x02	0x00	0x20	0x04		릴레이2
0xA1	0x04	0x02	0x00	0x40	0x04		IN1
0xA1	0x04	0x02	0x00	0x80	0x04		IN2
0xA1	0x04	0x02	0x00	0x30	0x04		릴레이1,2
0xA1	0x04	0x02	0x00	0x70	0x04		릴레이1,2,IN1
0xA1	0x04	0x02	0x00	0xF0	0x04		릴레이1,2,IN1,IN2

■ 디스플레이 표시예

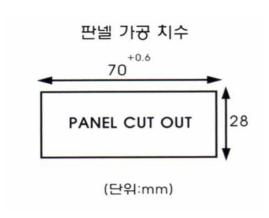
/ 숫자 및 도트표시예

/ 문자 표시예 (PLAY)


/ 문자 표시예 (STOP)


/ 문자 표시예 (SET3)

■ 결선도 DP485D-DC



■ 결선도 DP485D-AC(외부 입력 스위치 연결은 AC/DC 공통)

■ 판넬가공 치수

■ 외형 치수 (단위 mm)

※제품에 전원투입 후 모듈이 명령을 받기위해 준비하는 시간이 필요합니다. 전원투입 후 약 200ms후에 명령을 사용하시기 권장합니다. 모듈이 기동준비를 하는 동안에는명령에 응답하지 않습니다. 이는 전원이 불안정한 환경 하에서 오동작을 방지하기위한 최소 권장 딜레이입니다.